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Abstract

This paper introduces a novel method to define geographic markets
using machine learning. Using an unsupervised learning approach, we
cluster sales based on customers’ locations, with each cluster representing
a distinct market. The novelty of our method is that we leverage the iden-
tity of the seller for each observation to capture market structures that
cannot be captured by today’s methods. We integrate the assumption that
sellers focus on a few geographic markets into our Bayesian framework and
empirically implement the method using a Gibbs sampler. Estimating the
geographic markets for real estate agents in Stockholm, our algorithm does
significantly better in correctly classifying sales than the baseline K-means
algorithm, achieving a Dice score of 0.78 compared to 0.67. We find that
the number of markets each agent works in is distributed more similarly
to the industry knowledge in our classification than in the baseline com-
parison. Our method classifies the markets such that market concentra-
tion, as measured by the Herfindahl-Hirschman Index (HHI), is closer to
the market concentration calculated using the correct classification than
the baseline K-means, thereby improving understanding of market power
and competition dynamics. Finally, we investigate the correct number of
clusters and find that, in our example, it corresponds to the established
knowledge of the market’s geographic structure.

*We thank Petter Berg for generously providing data access. We thank Richard Friberg,
Alon Eizenberg, Christos Genakos, and Salil Sharma for their insightful comments. Johan
Orrenius thanks Jan Wallanders och Tom Hedelius stiftelse for financial support
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1 Introduction

Economic activity takes place in a market, yet there is no consensus on the
definition of a market. Numerous economists have made attempts; Cournot,
Marshall, and Walras tried to define the scope of markets, but no universally
accepted definition has been accepted. Modern research has since ignored the
issue. This paper proposes a data-driven unsupervised learning method to define
geographic markets. By utilizing the customers’ geographic locations and the
identity of the seller sellers they bought from, we reveal market structures that
are not purely based on a distance metric.

Conceptually, a market should consist of goods or services with high substi-
tution elasticities. These high elasticities need to hold in two dimensions: the
product space, where products need to be similar enough to be substitutable,
and the geographic dimension, where the area defining the market needs to be
such that consumers can viably substitute between sellers. Geographic markets
are especially important when it comes to the market for local services such as
real estate agents, hairdressers, restaurants, and retail stores such as grocery
stores.

This paper will focus on defining geographic markets. We will use a tech-
nique from machine learning called Gaussian mixture models to group sales into
different geographic areas, which allows us to define geographic clusters. Each
cluster is then a markets. Our method starts by clustering the consumer location
into a cluster using only spatial data, using the standard K-means algorithm.
The K-means classification is also the benchmark we will compare our results
with.

With these classifications, we induce each market as a spatial probability
distribution. Each consumer’s location has a separate probability of belonging
to each cluster. To incorporate the information on which seller the consumer
bought from, we update the probabilities such that the probability of a con-
sumer’s location belonging to a market is higher if the consumer has bought
from a seller that is very active in that market. We then reclassify the con-
sumers based on the updated probabilities, such that they belong to the cluster
of which their probability is highest. The updated classification is then used to
induce the probability distributions in the same way as above. This process is
repeated multiple times to reach a stable solution.

Our paper’s main contribution to the literature is on the definition of geo-
graphic markets. We introduce a novel and straightforward method that cap-
tures underlying market structures that have not been addressed before. As
pointed out in the survey of Elzinga & Howell (2018) geographic markets have
been defined historically by raw distance or administrative regions. The choice
of market definition matters as it qualitatively changes the measures of compe-
tition and the conclusions we draw from them, both in Elzinga & Howell (2018)
and in Genakos & Pagliero (2022). For example, the UK Competition Market
Authority case between Poundland and 99p (CMA, 2015) is a prominent ex-
ample of when different definitions would give different recommendations. Our
new clustering algorithm is a more sophisticated method that could remove
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some arbitrary elements that policymakers otherwise have to make.
Clustering as a way to define markets is not a novel concept. It has been

used by Ellickson et al. (2020), Assad et al. (2024) Carranza et al. (2015)
Zwanziger et al. (1990) and Lu (2017). Previous attempts to define markets
have clustered on the seller’s location, ignoring the consumers’ location.

To the best of our knowledge, our paper is one of the first to use both
information on seller and consumer, in defining geographic markets using a
clustering algorithm. The first novelty of our method is that we instead cluster
on the consumer’s location. We also incorporate information on the seller’s
identity. Using observational data, our method captures other underlying factors
that may limit the geographic scope of the market beyond pure distance or
administrative regions. These structures have previously been hard to capture
empirically but are emphasized in the new US Department of Justice merger
guidelines.

The new merger guidelines for the US DOJ speak to different dimensions of
geographic markets as described in the quote:

Factors that may limit the geographic scope of the market includes
transportation costs (relative to the price of the good), language, reg-
ulation, tariff and non-tariff trade barriers, custom and familiarity,
reputation, and local service availability.

Our paper can identify the above-mentioned characteristics in ways that a
distance-based algorithm cannot. For example, our method captures natural
boundaries, such as large roads, rivers, and mountains. In other settings, our
method could find segregation and discrimination.

One problem with all clustering algorithms is to decide on the number of
clusters to use. The number of clusters is often set exogenously. Different
approaches to endogenize the number of clusters have been made, for example
by Carranza et al. (2015). In our setting, we use the mathematically consistent
Bayesian Information Criterion (BIC) measure to suggest the number of clusters.
This allows us to address the question of at which geographical level competition
takes place.

Our paper relies on a minimal number of variables in the data, most notably,
we require no prices. This makes it an attractive way to define geographic
markets where other methods might be hard to implement. Some examples
are markets where consumers do not pay for the service, such as platforms or
privately provided public goods, that are free of charge to the consumer. Or
where the price is regulated, such as taxes.

Like most observational methods, our method uses sales patterns to define
geographic markets. We cannot observe a counterfactual, i.e., how sales patterns
would change if quality or prices change. Instead, we observe the equilibrium
outcome which we use for our market definition. These limitations similarly
apply to other clustering algorithms cited above.

One standard clustering model is the K-means clustering method Macqueen
(1967), which is related to Gaussian mixture models s. It is a ”hard” clustering
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method whereas our method is a ”soft” clustering method, using the proba-
bilistic assignment. We benchmark against the K-means method, which we also
apply by clustering on the consumer locations. The K-means method has been
used by Yang (2018) and Ellickson et al. (2020), but then to cluster in the
product space or to cluster on the sellers’ location. On top of the geographic
component, our unsupervised algorithm aligns clusters to follow the sales pat-
terns of different sellers, as we expect sellers to compete in some but not all of
the markets.

To demonstrate an application of our method, this paper defines geographic
markets for the service of real estate agents for apartments in Sweden. It is a
regulated market, where the fee charged by the real estate agent is minimal in
comparison to the sales value of the home, making price signals less relevant.
The data used is sales of apartments and the employment of real estate agent
services. There is evidence that the Swedish real estate agents market lacks
competition. In 2015 the Swedish Competition Authority stopped a merger of
two of the largest real estate agencies, indicating the relevance of competition
measures for the real estate agent market. Various strategies for improving
competition in the market have been suggested by Lind & Kopsch (2014). We
believe that the setting can be of interest both within and outside of academia.

We find that our algorithm classifies sales into markets significantly better
than the baseline of the K-means method, in relation to the validation set which
is based on industry knowledge. Areas that are separated by natural boundaries,
and therefore belong to different markets are classified by K-means as belonging
to the same market. Our method finds the natural boundaries without distorting
other correct classifications.

The choice of market definition has an impact on market concentration, as
measured by the Herfindahl–Hirschman index (HHI) in our data. The K-means
clustering yields a lower HHI than both the validation set and our method,
which risks underestimating market concentration when designing policy.

We find that the BIC metric indicates a similar number of clusters as there
are markets, according to industry knowledge. However, this result is tentative
and prone to uncertainty about the specification and data. Following only the
BIC metric gives unintuitive results, and should instead be viewed as a guideline
on the number of clusters.

Following the introduction, Section 2 will briefly describe our method. A
more technical explanation can be found in Appendix A. In Section 3 we will
introduce the case study and its settings. Section 4 presents the results, followed
by the conclusion in Section 5.

2 Our definition of a market

Clustering is about classifying data points. There are multiple methods avail-
able. See ( (Macqueen, 1967) Hastie et al, other). One split available is that be-
tween deterministic and model-based methods. Deterministic methods are hard
clustering methods, meaning that each observation is assigned to one cluster.
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Model-based methods are soft clustering methods, meaning that each observa-
tion is assigned a probability of belonging to each cluster.

Previously in market definition, the K-means clustering algorithm has been
used (Ellickson et al. , 2020; Yang, 2018). It is a deterministic method that mini-
mizes the within-cluster variance under a metric, often Euclidean distance(Athey
& Imbens, 2019). Assuming we have clusters g ∈ G, the K-means algorithm
classifies each datapoint xi into a cluster g.

A model-based approach instead treats each cluster g as a probability distri-
bution and assigns the datapoint xi to the cluster g ∈ G which it is most likely
to belong to (Fraley & Raftery, 2002; Lavine & West, 1992; McLachlan et al.
, 2019). One common family of model are the mixture models, specifically the
Gaussian mixture models (McLachlan et al. , 2019).

2.1 Gausian Mixture Models

The advantages of Gaussian mixture models are that they allow for out-of-
sample predictions and that they allow for variance in the shape, orientation,
and volume (Bensmail et al. , 1997) of the clusters. In our economic setting,
each market is a cluster (Ellickson et al. , 2020).

We define a density function for each g componete that is dependent on the
unknown variables Φ, fg(x|Φ) which will be a gausian disrubution fg(x|Φ) =
N (µg(Φ),Σg(ϕ)) with center µg and a covariance matrix Σg. . The distribution
of the mixture model is the distribution of the components times the wiughts
πg(Φ) giving us

f(x|Φ) =
G∑
j

πj(Φ)fj(x|Φ)

Definition 1 Each cluster g ∈ G is characterized by a two-dimensional Gaus-
sian distribution N (µg,Σg) with center µg ∈ R2 and covariance matrix Σg ∈
PD2.

For our setting we define a point in x ∈ R2. It will be classified according to
assumtion 1

The distributions are unobserved to the econometrician and are what we
want to estimate them. Once we have estimated them we can classify any point
in space into a cluster.

Assumption 1 Given G clusters, an arbitrary xg will be assigned to cluster g
such that g = argmax

j∈G
p(xg ∈ j). Each cluster j will be a market.

Let us now introduce the data that induces the clusters. To estimate the
clusters we will use the location of the consumer i and the identity of the sellers
of to consumer i which we call yi.We have N consumers and M sellers. The
realization of the data will consist of pairs {(xi, yi)}Ni=1 where xi ∈ R2 is the ge-
ographical position of the individual and yi ∈ {1, . . . ,M} is the seller l who sold
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to i. In this specification, all transactions are treated as different individuals,
but it is possible to allow an individual to buy from multiple sellers by allowing
i to correspond to a transaction instead. For our data, we will assign them to
different clusters. This assignment we call {zi}Ni=1, zi ∈ {1, . . . , G}.

Further, each seller l will have a distribution of the probability of being
active in each cluster. This probability will allow us to have sellers who sell to
more than one market. It is characterized by Θ with Θ ∈ RG×M with θgl is
seller ls probability to sell in market g. The probabilities are non-negative and
sum to one. In our setting, Θ induces the differences in the shape, orientation,
and volume of the clusters (Bensmail et al. , 1997) and distinguishes from a
normally distributed mixture model that converges to the K-means algorithm
(McLachlan et al. , 2019).

By incorporating the seller’s sales pattern in the fitting of the clusters we in-
corporate the demand-side market measure with supply-side information. This
is the novel part of our method compared to the earlier use of clustering for
market definition. The theoretical motivation for sellers’ concentrating on a few
markets in defining markest can be found both in (Elzinga & Hogarty, 1973)
and DoJ merger guidelines (Commision & Trade, 2023). One motivation worth
mentioning is search cost for now how on different markets and transportation
costs.

2.2 Implementation

As in any Bayesian method, we define a density function for each cluster g and
they make up the classification likelihood. As of now, the parameters of the
model Φ and the data X with N observations and G clusters.

L(Φ,X) =
N∏
i=1

G∑
g=1

(p(X|Φ)p(zi|Φ)) (1)

In appendix ?? we present the full definition including the conjecture prior and
the full likelihood.

The aim is to estimate the posterior distribution of the clusters. Since this
is intractable we will use a Markov Chain Monter Carlo method to sample from
the posterior distribution, as is standard in the literature (Metropolis et al. ,
1953; Hastings, 1970; Bernado & Smith, 1994). We implement the sampling
with a Gibbs sampler (Geman & Geman, 1984; Bernado & Smith, 1994) as
standard in (Lavine & West, 1992).

We will use a Gibbs sampler to sample from the posterior distribution.
The Gibbs sampler is a way to sample a realization of a Markov chain with
p(z, µ, σ,Θ|x, y) as its invariant distribution. To implement the Gibbs sampler
we need to be able to sample from the distributions of z, µ, σ,Θ|, see Appendix
?? for the full derivation.

Once the Gibbs sampler has converged we will have an estimated posterior
for the clusters g according to Defenition 1 and any location x ∈ R2 is assigned
to a cluster according to Defenition 2.
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More sections to be added

2.3 The number of clusters

The drawback of any clustering algorithm is that the number of clusters G is
set exogenously. Different approaches to endogenize the number of clusters have
been made. The most common one is the Bayesian information criteria (BIC)
(Bernado & Smith, 1994; Raftery, 2016), based on the Bayes factor. It is derived
from the likelihood of the distribution and the number of parameters. The BIC
is defined as:

BIC = (5 +M) ∗G ∗ ln(N)− 2 ∗ ln(L(z|x, y)), (2)

where the rule is to select G such that the model estimated minimizes BIC. We
iterate the algorithm over G, and benchmark models with a low BIC score as
appropriate.

We use the Dice coefficient to evaluate our model. It spans between 0 and
1, where a higher value indicates a better classification. The dice coefficient is
calculated as the overlap between the validation clusters and the outcome of the
clustering algorithm. It is a very simple metric but gives us a sense of how well
our algorithm is performing. The validation set is created by knowledge of the
correct markets in the restricted sample.

3 Case study, the Stockholm real estate agents
market

3.1 Setting

We apply our method to the setting of the market for real estate agents in
Stockholm. The focus of the data will be apartments in downtown Stockholm.
The restriction is due to computational reasons, but an expansion to a larger
area is possible.

In our setting, the real estate agent is the seller l and the flat they sell will
be considered at the location of the individual i. Real estate agents only work
for the seller of the apartment in Sweden, and the fees of selling a flat are low
in an international comparison1.

Stockholm’s geography is special as it is a city built on islands and in down-
town Stockholm there are four distinct districts on three islands. Two of the
districts are their own islands, whereas the other two are on the same island.
The four districts are historically administrative regions, although the two dis-
tricts that are on the same Island were recently merged. The districts are clear
identity markers in Stockholm’s society.

13.5% without tax, compared to 5% and 7.7% in Finland and the US respectively according
to Lind & Kopsch (2014)
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When listing a real estate, the name of the district is the first thing displayed
and buyers usually have clear preferences over districts. For this example, we
will use the districts, Kungsholmen, Vasastan, Södermalm and Östermalm.

Real estate agents in Sweden most often work for big franchises. The fran-
chise taker has its own office and coverage area. They have a non-compete
agreement with other offices of the same franchise. They are therefore restricted
to selling in a designated area.

3.2 Data

The sample used for the analysis is sales of apartments in the inner Stockholm
area from 2017.2 We use 3145 observations, in four districts in downtown Stock-
holm. We require the agents to sell at least 10 apartments during the period.
This is only a subsample of available data, but here we know the market for real
estate agents very well, and a good verification set can therefore be created.

Relevant data for the estimation are the geographical position of apartment
i, (xi ∈ R2) and the real-estate agent that sold apartment i, (yi). These are
the only data we will use to estimate our model. The final assignment zi of
appartment i is the output of our method. We will then use the official listing
area to validate our method. The validation will be benchmarked by comparing
with using K-means clustering to define markets.

4 Results

4.1 Mechanisms of the method

The novelty of our method is the use of a second dimension of information on top
of the geographic location to define markets. As markets are defined as Gaussian
distribution over R2 this is equivalent to the movement of the center of each
distribution µg as well as changes to the covariance matrix Σg. To illustrate
this we look at our sample data. The validation set is plotted in Figure 1. We
now induce 4 clusters using k-means as our baseline. The distributions of each
cluster are plotted in Figure 2. On top of that, a sample of observations is
plotted in the same figure. Here the different validation clusters are indicated
by different shapes. The baseline clustering algorithm corresponds to evaluating
the probability of belonging to each of the clusters. The cluster with the highest
probability is the one that the observation is assigned to. As we can see there are
some mich-match. A validation cluster will have observations that span more
than one cluster. One important observation is that the size and shape of the
probability distributions are not too different. Also note that the distributions
have a large overlap, and visually we see that the blue circles in the middle seem
to have a higher probability to be in the lower cluster than in the left cluster,
like the rest of the circles. The classifications are shown in Figure 3. Here we
see that the the island in the western part of Stockholm, Kungsholmen is split

2We are grateful to Petter Berg for supplying the data
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into two markets, such that the eastern part is linked with the southern island
of Södermalm. This is an error as seen in the validation set in Figure 1.

We now employ the new algorithm. As said the algorithm takes the infor-
mation on who buys from which real estate agent and updates the covariance
matrix Σg of the cluster as well as the centers µg. The distributions are plotted
in Figure 4. We have now reshaped them to be more elliptical. As we iterate
over the sample we update the distributions such that areas of overlap are min-
imized, and the cluster with the lower share of common sales, ie where the real
estate agents in the overlap do not sell a lot in that cluster will give space to
the cluster with a higher common share of sales. This is done by skewing the
shape. This leads to a better fit. The classification is shown in Figure 5. Here
we see that the island of Kungsholmen is now in one cluster. This is a better
fit to the validation set.

Figure 1: Validation
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Figure 2: Distributions for baseline
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Figure 3: Classification of baseline
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Figure 4: Distributions for Gaussian mixture models
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Figure 5: Classification for Gaussian mixture models

We first plot the clusters as scatter graphs. In Figure 6 we present the results
of our method and compare it with the validation clusters. In the validation
graph, we see that the southern cluster is on a separate island. Also, the western
cluster is on an island, but as the width of the water is small, it is not as obvious.
The outcome of our clustering algorithm generates almost the same boundaries
as the validation clusters, with the difference that the top clusters are merged
and the bottom one is split into two.
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Figure 6: The clustering by our algorithm compared to the listing areas

Our Algorithms, predictions Validation clusters

In Figure 7 we plot the difference between our method and K-means. In this
scatterplot, they look very similar. There are differences but if one of them is
better than the other is not indicated. We therefore place a background of a
map to see the relationship to geography.

Figure 7: The clustering by our algorithm compared to K-means

Our Algorithms, predictions K-means clusters

To understand the geographic component we zoom in on the areas with
differences in Figure 8 and see that our algorithm clearly divides the clusters
based on the water whereas the pure distance-based K-means method thinks
that part of the island is in three markets, counter-intuitive to practitioner
knowledge.
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Figure 8: The clustering by our algorithm compared to K-means on a map

Our Algorithms, K-means clusters

To check the validity we compute the dice scores of our method and K-means
with regard to the listing areas which we treat as the validation set. We see
that both algorithms are good at finding the underlying market structure but
that our score of 0.78 is substantially better than the K-means methods’ 0.67.

4.2 Economic impact

Our algorithm updates the clusters such that a single agent should be in as few
as possible. To see the change we plot the number of markets that each agent is
active in if Figure 9 for our three different market definitions. The distribution
in clusters corresponds well with the validation set in how many markets each
agent is active in, whereas K-means by misclassifying the borders around the
island believes the agents work in more than one market.
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Figure 9: The number of markets an agent is active in

In Figure 10 we see how concentrated each agent is. Our algorithm finds a
higher concentration than the K-means. The concentration lies much closer to
the validation cluster than the K-means.

Figure 10: The concentration of each agent, ranging from 0 to 10000

To investigate the economic implications of the definitions we compute an
HHI index for each market and quarter and plot the results in Figure 11. Using
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the validation set as the market definition we get an average HHI of 999. For our
market definition we get 904 and for K-means it is 881. We see that our measure
comes close to capturing the same market concentration as the validation set
whereas K-means indicates a lower market concentration. The difference is not
large, and should not be extrapolated to other datasets. We further see that
the Stockholm real estate agents are not that concentrated.

Figure 11: The distribution of HHI for the different markets on a quarterly level

The number of clusters

In Figure 12 we look at the BIC scores for different numbers of clusters. Our
assumption based on institutional knowledge of 4 clusters is not the one with
the lowest BIC. We therefore look at some of the outcomes for 6 clusters.
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Figure 12: The BIC test indicates that 5 is the correct number of clusters
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We here uncover a new pattern, where one more of the clusters arises divided
into two. Our algorithm once again manages to find natural borders as compared
to K-means. We further see that the new cluster is not the one that corresponds
to the two validation clusters. Our algorithm here suggests that the relevant
market definition would rather be splitting the two islands, as there seem to be
many real estate agents who sell in both.

Figure 13: The clustering by our algorithm compared to K-means, for 5 clusters

Our Algorithms, predictions K-means
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5 Conclusion

In our paper, we propose a method to define geographic markets. It uses an
unsupervised clustering algorithm with minimal data requirements to define
markets. The sales data allows us to reveal market structures that traditional
market definitions would miss. Having a method to suggest geographic market
definitions in addition to existing methods would be useful, both for competition
authorities and private companies. Our method is very adaptable to different
settings and requires very little data, compared to other methods. After tests
in different datasets, it could be a complement to the existing methods. In its
infancy, the method should be tested in other settings and other industries that
are not as special as the real estate agents market. Our framework can also
discover discrimination and segregation.
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fastighetsmäklarmarknaden. Tech. rept. Konkurrensverket, Stockholm.

Lu, Anna W. 2017. Three Essays on Empirical Industrial Organization in Gro-
cery Retailing. Ph.D. thesis, Heinrich-Heine-Universität.

Macqueen, J. 1967. Some Methods for Classification and Analysis of Multivari-
ate Observations. Pages 281–297 of: Berkeley Symp. on Math. Statist. and
Prob.

McLachlan, Geoffrey J., Lee, Sharon X., & Rathnayake, Suren I. 2019. Finite
mixture models. Annual Review of Statistics and Its Application, 6(1988),
355–378.

Metropolis, Nicholas, Rosenbluth, Arianna W., Rosenbluth, Marshall N., Teller,
Augusta H., & Teller, Edward. 1953. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

Raftery, Adriatn E. 2016. Bayesian Model Selection in Social Research Author
( s ): Adrian E . Raftery Source : Sociological Methodology , Vol . 25 ( 1995
), pp . 111-163 Published by : American Sociological Association Stable URL
: http://www.jstor.org/stable/271063 Accessed : 29. 1995(25), 111–163.

Yang, Yan. 2018. A New Solution to Market Definition: An Approach Based
on Multi-dimensional Substitutability Statistics. Ph.D. thesis, Washington
University.

20



Zwanziger, Jack, Melnick, Glenn A., & Mann, Joyce M. 1990. Measures of hos-
pital market structure: a review of the alternatives and a proposed approach.
Socio-Economic Planning Sciences, 24(2), 81–95.

A Model

B Algorithm

The data consists of pairs {(xi, yi)}Ni=1 where xi ∈ R2 is the geographical po-
sition of the house, yi ∈ {1, . . . ,M} is the real estate agent that sold house
i, observe that there are N houses and M different real estate agents. The
unobserved variable is {zi}Ni=1, zi ∈ {1, . . . ,K}. zi is the market (or cluster)
assignment for house i. Furthermore we have the following random variables

{µj}Kj=1, µj ∈ R2,

{Σj}Kj=1, Σj ∈ PD2,

Θ ∈ RK×M , s.t θjl ≥ 0,

M∑
l=1

θjl = 1.

µj is the center values matrix for cluster j, Σj is the covariance matrix for
cluster j and θjl is the probability that a random house in market j is sold by
agent l. Furthermore we have the non stochastic hyperpriors

µ0, λ0, ν0,Ψ0, hyperpriors to µj ,Σj ,

α, huperpriors to θj .

We impose the following

xi ⊥ yi|zi,
(xi, yi) ⊥ (xj , yj)|zi, zj ,Θ,

p(zi|yi,Θ) = θzi,yi ,

xi|zi, µ,Σ ∼ N(µzi ,Σzi),

zi ∼ U({1, . . . ,K}),
µj ,Σj ∼ NIW(µ0, λ0, ν0,Ψ0),

θj ∼ Dir(α).

The joint distribution can then be written as follows, shorthand notation x =
{x1, . . . , xN}, y = {y1, . . . , yN}, µ = {µ1, . . . , µK} etc,

p(x, y, z, µ,Σ, z,Θ) =

N∏
i=1

p(xi|zi, µ,Σ)p(yi|zi,Θ)p(zi)

K∏
j=1

p(µj |Σj)p(Σj)p(θj)

N∏
i=1

N(xi|µzi ,Σzi)θzi,yi

1

K

K∏
j=1

N(µj |µ0,
1

λ0
Σj)W−1(Σj |ν0,Ψ0)

M∏
l=1

1

B(α)
θαl−1
jl .
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The generative process to sample a data pair (x, y) is done by, sample z uniform
among the clusters, sample θz from the Dirichlet distribution with parameters
α, sample Σz from the Wisehart distribution with parameters ν0,Ψ0, sample
µj from the multivariate normal with mean µ0 and covariance matrix 1

λ0
σz.

sample y from a categorical distribution with probability vector θz and sample
x from a normal distribution with mean µz and covariance Σz.

Now the goal is to find the posterior p(z|x, y). Since this posterior is in-
tractable we find a way to sample from the posterior instead. Here we present a
Gibbs sampler, a way to sample a realisation of a Markov chain with p(z, µ, σ,Θ|x, y)
as its invariant distribution. To implemet the Gibbs sampler we need to be able
to sample from the following distributions

p(z|x, y, µ,Σ,Θ),

p(Σ|x, y, z, µ,Θ),

p(µ|x, y, z,Σ,Θ),

p(Θ|x, y, z, µ,Σ).

We start with p(Σ|x, y, z, µ,Θ), this is a standard conjugate prior so

Σj |x, y, z, µ,Θ = Σj |x, z ∼ W−1(ν′j ,Ψ
′
j),

nj =

N∑
i=1

1zi=j ,

x̄j =
1

nj

N∑
i=1

xj1zi=j ,

ν′j = ν0 + nj ,

Ψ′
j = Ψ0 +

N∑
i=1

(xi − x̄j)(xi − x̄j)
T 1zi=j +

λnj

λ0 + nj
(x̄j − µ0)(x̄j − µ0)

T .

In the same way we get the posterior for µ

µj |x, y,Σj ,Θ = µj |x, zΣj ∼ N(µ′
j ,Σj),

µ′
j =

λ0µ0 + nj x̄j

λ0 + nj
.

The posterior for Θ is also standard conjugate prior calculations

p(θj |x, y, z, µ,Σ) = p(θj |y, z) ∝ p(y|θj , z) ∝
N∏
i=1

θj,yi
1zi=j

M∏
l=1

θαl−1
jl

so we conclude that θj |y, z is Dir(α′
j) distributed, where

α′
jl = αl +

n∑
i=1

1yi=l1zi=j .
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Finally we have the distribution for z.

p(zi|xi, yi, µ,Σ,Θ) ∝ p(xi|zi, µ,Σ)p(yi|zi,Θ) = N(xi|µzj ,Σzj )θziyi
,

so the posterior conditional distribution for zi is categorical dsitributed with
probability

P (zi = j) =
N(xi|µj ,Σj)θjyi∑K

j′=1 N(xi|µ′
j ,Σ

′
j)θj′yi

.

Now the Gibbs sampler can be implemented as follows.

Input: x, y, ν0, µ0, λ0,Ψ0, α
Result: Samples zti from the posterior distribution;
Make an initial guess for z0i , K-Means for example;
for t=1. . .T do

Sample Σt ∼ p(Σ|x, zt−1);
Sample µt ∼ p(µ|x, zt−1,Σt);
Sample Θt ∼ p(Θ|y, zt−1);
Sample zt ∼ p(z|x, y, µt,Σt,Θt);

end

return {zt}Tt=burn in

Gibbs sampler for the posterior distribution of cluster assignment

The burn in period is used because unless the original guess is drawn from the
invariant distribution there will be a period until the samples are approximately
from the stationary distribution.
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